Crystal structure of TET protease reveals complementary protein degradation pathways in prokaryotes.
نویسندگان
چکیده
Protein degradation is an essential and strictly controlled process with proteasome and functionally related proteases representing its central part. Tricorn protease (TRI) has been shown to act downstream of the proteasome, degrading produced peptides. Recently, a novel large prokaryotic aminopeptidase oligomeric complex, named TET, has been identified. This complex degrades peptides of different length in organisms where TRI is not present. We determined the crystal structure of TET from the thermophilic archaeon Pyrococcus horikoshii at 1.6 A resolution in native form and in complex with the inhibitor amastatin. We demonstrate that, beside the novel tetrahedral oligomerisation pattern, TET possesses a unique mechanism of substrate attraction and orientation. TET sequentially degrades peptides produced by the proteasome to single amino acids. Furthermore, we reconstituted in vitro the minimal protein degradation system from initial unfolding of labelled protein substrates, up to release of free amino acids. We propose that TET and TRI act as functional analogues in different organisms, with TET being more widely distributed. Thus, TET and TRI represent two evolutionarily diverged pathways of peptide degradation in prokaryotes.
منابع مشابه
miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer
Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...
متن کاملComparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols
Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...
متن کاملA Pair of Manganese(III) Schiff-Base Enantiomers: Synthesis, Crystal Structure and Magnetic Characterization
Based-on the quasi-planar tetra-dentate Schiff-base ligand, a pair of manganese(III) Schiff-base enantiomers formulated as {[Mn(R,R-3-MeOSalcy)(H2O)(CH3OH)]ClO4}2 (1) and {[Mn(S,S-3-MeOSalcy)(H2O)(CH3OH)]ClO4}2 (2) (3-MeOSalcy = N,N′-(1,2-cyclohexanediylethylene)bis(3-methoxysalicylideneiminato)dianion) ...
متن کاملCrystal structure of a dodecameric tetrahedral-shaped aminopeptidase.
Protein turnover is an essential process in living cells. The degradation of cytosolic polypeptides is mainly carried out by the proteasome, resulting in 7-9-amino acid long peptides. Further degradation is usually carried out by energy-independent proteases like the tricorn protease from Thermoplasma acidophilum. Recently, a novel tetrahedral-shaped dodecameric 480-kDa aminopeptidase complex (...
متن کاملPhotocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study
ZnO and 2% Fe doped ZnO photocatalytic nanomaterials were successfully synthesized by successive ionic layer adsorption and the reaction (SILAR) method. The characterizations of these nanomaterials were carried out using XRD, SEM and EDX techniques. XRD study shows that the samples have a hexagonal wurtzite crystal structure, size of which is in the range 21-23 nm. SEM shows nanoflakes or nano ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 346 5 شماره
صفحات -
تاریخ انتشار 2005